解题思路:首先根据a1+a2+a3+…+an=2n-1,求出a1+a2+a3+…+an-1=2n-1-1,两式相减即可求出数列{an}的关系式,然后求出数列{an2}的递推式,最后根据等比数列求和公式进行解答.
∵a1+a2+a3+…+an=2n-1…①
∴a1+a2+a3+…+an-1=2n-1-1…②,
①-②得an=2n-1,
∴an2=22n-2,
∴数列{an2}是以1为首项,4为公比的等比数列,
∴a12+a22+a32+…+an2=
1−4n
1−4]=
1
3(4n−1),
故选C.
点评:
本题考点: 数列的求和;数列递推式.
考点点评: 本题主要考查数列求和和求数列递推式的知识点,解答本题的关键是求出数列{an}的通项公式,本题难度一般.