基础高数二重积分1.∫∫D(x²-y²)dxdy ,0

1个回答

  • 1.∫∫D(x²-y²)dxdy

    =∫(0,π)dx∫(0,sinx)(x²-y²)dy

    =∫(0,π)dx[x²sinx - (sin³x)/3]

    =∫(0,π)[x²(-dcosx) + (sin²x)(dcosx)/3]

    =∫(0,π)[(1-cos²x)(dcosx)/3] - x²cosx|(0,π) + ∫(0,π)cosx dx²

    =(3cosx-cos³x)/9|(0,π) - x²cosx|(0,π) + 2∫(0,π)x dsinx

    =π² - 4/9 + 2xsinx|(0,π) - 2∫(0,π)sinx dx

    =π² - 4/9 + 2cosx|(0,π)

    =π² - 40/9

    2.所围的区域是1/2 < y < 2,1/y < x < 2

    ∫∫Dye^xydxdy

    =∫(1/2,2)ydy∫(1/y,2)e^xydx

    =∫(1/2,2)ydy * [e^(2y) - e]/y

    =∫(1/2,2)dy * [e^(2y) - e]

    =[e^(2y)/2 - ey]|(1/2,2)

    =(e^4)/2 - 2e

    3.交线是x²+2y²=6-2x²-y²,即x²+y²=2

    体积=∫∫D(z1-z2)dxdy

    =∫∫D[6-2x²-y²-(x²+2y²)]dxdy

    用极坐标代换,令x=rcost,y=rsint

    则0