a(x^3 - x^2 +3x) + b(2x^2 + x) +x^3 -5
= ax^3 - ax^2 +3ax+ 2bx^2 + bx +x^3 -5
=(a+1)x^3+(2b-a)x^2+(3a+b)x-5
因多项式为二次多项式
则a+1=0
a=-1
原式=(2b+1)x^2+(b-3)x-5
当X=2时,值为-17
则:4(2b+1)+2(b-3)-5=-17
8b+4+2b-6-5=-17
b=-1
则原式=(-2+1)x^2+(-1-3)x-5
=- x^2-4x-5
当X=-2时
原式=-4+8-5=-1