设
x = cos^2t
y = sin^2t
(x+1/x)(y+1/y)
= sin^2t*cos^2t + 1/sin^2tcos^2t + sin^2t/cos^2t +cos^2t/sin^2t
= (2 - 2sin^2tcos^2t + sin^4tcos^4t)/sin^2tcos^2t
= sin^2tcos^2t + 2/sin^2tcos^2t - 2
= sin^2(2t)/4 + 8/sin^2(2t) - 2
0 < sin^2(2t) = 25/4
设
x = cos^2t
y = sin^2t
(x+1/x)(y+1/y)
= sin^2t*cos^2t + 1/sin^2tcos^2t + sin^2t/cos^2t +cos^2t/sin^2t
= (2 - 2sin^2tcos^2t + sin^4tcos^4t)/sin^2tcos^2t
= sin^2tcos^2t + 2/sin^2tcos^2t - 2
= sin^2(2t)/4 + 8/sin^2(2t) - 2
0 < sin^2(2t) = 25/4