函数f(x)的定义域为(a,b),且对其内任意实数均有:(x1-x2)【f(x1)-(x2)】《0,则f(x)在(a,b
2个回答
由(x1-x2)【f(x1)-(x2)】《0
即f(x)的导数在(a,b)上小于零
f(x)在(a,b)上递减
相关问题
函数f(x)的定义域为u(a,b),且对其内任意实数x1,x2均有(x1-x2)[f(x1)-f(x2)]>0,则f(x
设a>0为给定的实数,f(x)为定义域在实数集上的函数,且对任意实数x均有f(x+a)=1/2+根号(f(x)-f^2(
已知函数F(x)=[a/3x3+b2x2+x(a>0),f(x)=F′(x),若f(-1)=0且对任意实数x均有f(x)
若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)•f(b),且当x<0时,f(x)>1.
若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)•f(b),且当x<0时,f(x)>1.
若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)•f(b),且当x<0时,f(x)>1.
若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)•f(b),且当x<0时,f(x)>1.
函数f(x)=ax^2+bx+1(a、b属于R),且f(-1)=0,对任意实数x均有f(x)≥0成立
若非零函数F(X)对任意实数a,b均有F(a+b)=f(a)*f(b),且x小于0时,f(x)大于1;
设函数f(x)=ax2+bx+1(a、b∈R)满足:f(-1)=0,且对任意实数x均有f(x)≥0成立,