sinA-sinB)^2 + (cosA-cosB)^2 = sinA^2 - 2sinAsinB + sinB^2 + cosA^2 - 2cosAcosB + cosB^2 = sinA^2 + cosA^2 + sinB^2 + cosB^2 - 2(cosAcosB+sinAsinB) = 2 - 2cos(A-B) = 1/4 + 1/4 = 1/2
∴ cos(A-B) = 3/4
∵ sinA-sinB
sinA-sinB)^2 + (cosA-cosB)^2 = sinA^2 - 2sinAsinB + sinB^2 + cosA^2 - 2cosAcosB + cosB^2 = sinA^2 + cosA^2 + sinB^2 + cosB^2 - 2(cosAcosB+sinAsinB) = 2 - 2cos(A-B) = 1/4 + 1/4 = 1/2
∴ cos(A-B) = 3/4
∵ sinA-sinB