过点C作EF∥AB 延长BC交AD于点E
∴∠B=∠BCF ∵∠A=30°,∠B=40°
∵∠B=40° ∴∠AEB=110°
∴∠BCF=40° ∵∠AEB+∠CED=180°
∵AB∥A'D ∴∠CED=70°
∴EF∥A'D ∵∠D+∠CED+∠DCE=180°,∠D=35°
∴∠DCF=∠D ∴∠DCE=75°
∵∠D=35° ∵∠DCE+∠BCD=180°
∴∠DCF=35° ∴∠BCD=105°
∴∠BCD=75°
过点C作EF∥AB 延长BC交AD于点E
∴∠B=∠BCF ∵∠A=30°,∠B=40°
∵∠B=40° ∴∠AEB=110°
∴∠BCF=40° ∵∠AEB+∠CED=180°
∵AB∥A'D ∴∠CED=70°
∴EF∥A'D ∵∠D+∠CED+∠DCE=180°,∠D=35°
∴∠DCF=∠D ∴∠DCE=75°
∵∠D=35° ∵∠DCE+∠BCD=180°
∴∠DCF=35° ∴∠BCD=105°
∴∠BCD=75°