解题思路:(1)首先设甲店B型产品有(70-x),乙店A型有(40-x)件,B型有(x-10)件,列出不等式方程组求解即可;
(2)由(1)可得几种不同的分配方案;
(3)依题意得出W与a的关系式,解出不等式方程后可得出使利润达到最大的分配方案.
依题意,分配给甲店A型产品x件,则甲店B型产品有(70-x)件,乙店A型有(40-x)件,B型有{30-(40-x)}件,则
(1)W=200x+170(70-x)+160(40-x)+150(x-10)=20x+16800.
由
x≥0
70−x≥0
40−x≥0
x−10≥0,解得10≤x≤40.
(2)由W=20x+16800≥17560,
∴x≥38.
∴38≤x≤40,x=38,39,40.
∴有三种不同的分配方案.
方案一:x=38时,甲店A型38件,B型32件,乙店A型2件,B型28件;
方案二:x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件;
方案三:x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件.
(3)依题意:200-a>170,即a<30,
W=(200-a)x+170(70-x)+160(40-x)+150(x-10)=(20-a)x+16800,(10≤x≤40).
①当0<a<20时,20-a>0,W随x增大而增大,
∴x=40,W有最大值,
即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大;
②当a=20时,10≤x≤40,W=16800,符合题意的各种方案,使总利润都一样;
③当20<a<30时,20-a<0,W随x增大而减小,
∴x=10,W有最大值,
即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大.
点评:
本题考点: 一次函数的应用;一元一次不等式组的应用.
考点点评: 本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,
(1)根据A型、B型产品都能卖完,列出不等式关系式即可求解;
(2)由(2)关系式,结合总利润不低于17560元,列不等式解答;
(3)根据a的不同取值范围,代入利润关系式解答.