向量oa的模等于向量ob的模等于两向量的乘积=4,动点p满足向量op=xoa+yob,且x的绝对

1个回答

  • 1

    M是AB中点,故:OM=(OA+OB)/2

    即:MP=OP-OM=xOA+yOB-(OA+OB)/2

    =(x-1/2)OA+(y-1/2)OB

    2

    a^2(x-1/2)^2+b^2(y-1/2)^2=1

    即:(x-1/2)^2/(1/a^2)+(y-1/2)^2/(1/b^2)=1

    即:x和y构成一个椭圆方程

    令:x=1/2+cost/a,y=1/2+sint/b

    |OP|^2=x^2|OA|^2+y^2|OB|^2+2xyOA·OB

    =x^2a^2+y^2b^2

    =a^2(1/2+cost/a)^2+b^2(1/2+sint/b)^2

    =(a^2+b^2)/4+cost^2+sint^2+acost+bsint

    =2+acost+bsint

    故:|OP|^2的最大值:2+√(a^2+b^2)=4

    即:|OP|的最大值:2

    求四边形OAPB面积这一问稍微有点问题:

    因为P点可以在任意位置,构成的四边形不一定是OAPB

    按照一象限的话,也可能是凸或是凹四边形

    既然求最大值,就按照凸四边形作了:

    SOAPB=S△OAB+S△PAB

    S△OAB=ab/2

    AP=OP-OA=xOA+yOB-OA=(x-1)OA+yOB

    BP=OP-OB=xOA+yOB-OB=xOA+(y-1)OB

    故:S△PAB=|AP×BP|=|x(x-1)OA×OA+y(y-1)OB×OB+((x-1)(y-1)-xy)OA×OB|

    =|((x-1)(y-1)-xy)OA×OB|=|(1-x-y)ab|

    =|1-x-y|ab

    =|1-1/2-cost/a-1/2-sint/b|ab

    =|cost/a+sint/b|ab

    即:SOAPB=S△OAB+S△PAB

    =ab/2+|cost/a+sint/b|ab

    即:SOAPB的最大值:ab/2+ab√(1/a^2+1/b^2)

    =2+ab/2

    a^2+b^2=4≥2ab,即:ab≤2

    即SOAPB的最大值:2+1=3