一道三点共线的证明题目,难度较大

2个回答

  • 连接PQ,并在PQ上取一点M,使得B,C,M,P四点共圆,连CM,PF.设PF与圆的另一交点为E’,并作QG丄PF,垂足为G.易如QE2=QM·QP=QC·QB①∠PMC=∠ABC=∠PDQ.从而C,D,Q,M四点共圆,于是PM·PQ=PC·PD②由①,②得PM·PQ+QM·PQ=PC·PD+QC·QB,即PQ2=QC·QB+PC·PD.易知PD·PC=PE’·PF,又QF2=QC·QB,有PE’·PF+QF2=PD·PC+QC·AB=PQ2,即PE’·PF=PQ2-QF2.又PQ2-QF2=PG2-GF2=(PG+GF)·(PG-GF)=PF·(PG-GF),从而PE’=PG-GF=PG-GE’,即GF=GE’,故E’与E重合.所以P,E,F三点共线.