平行四边形ABCD,过A、B作CD的垂线分别交于E、F
AC^2=AE^2+(CD-DE)^2
BD^2=BF^2+(CD+CF)^2
AE=BF
CF=DE
AC^2+BD^2=AE^2+(CD-DE)^2+BF^2+(CD+CF)^2=2AE^2+(CD-DE)^2+(CD+DE)^2
=2AE^2+2CD^2+2DE^2=2AD^2+2CD^2
平行四边形ABCD,过A、B作CD的垂线分别交于E、F
AC^2=AE^2+(CD-DE)^2
BD^2=BF^2+(CD+CF)^2
AE=BF
CF=DE
AC^2+BD^2=AE^2+(CD-DE)^2+BF^2+(CD+CF)^2=2AE^2+(CD-DE)^2+(CD+DE)^2
=2AE^2+2CD^2+2DE^2=2AD^2+2CD^2