解1函数f(x)=向量a*b=(cos2x,sin2x)*(sinπ/4,cosπ/4)
=cos2xsinπ/4+sin2xcosπ/4
=sin(2x+π/4)
2当2kπ+π/2≤2x+π/4≤2kπ+3π/2,k属于Z时,y是增函数,
即当kπ+π/8≤x≤kπ+5π/8,k属于Z时,y是增函数,
故函数y=f(x)单调递减区间[kπ+π/8,kπ+5π/8],k属于Z.
解1函数f(x)=向量a*b=(cos2x,sin2x)*(sinπ/4,cosπ/4)
=cos2xsinπ/4+sin2xcosπ/4
=sin(2x+π/4)
2当2kπ+π/2≤2x+π/4≤2kπ+3π/2,k属于Z时,y是增函数,
即当kπ+π/8≤x≤kπ+5π/8,k属于Z时,y是增函数,
故函数y=f(x)单调递减区间[kπ+π/8,kπ+5π/8],k属于Z.