把e^x展开为幂级数e^x=1+x+x^2/2!+x^3/3!+x^4/4!+.
e^/x=1/x+1+x/2!+x^2/3!+x^3/4!
再积分
∫(e^x)dx/x=lnx+x+ x^2/2*2!+x^3/3*3!+x^4/4*4!+.
=lnx+∑x^n/(n*n!)
(n=1---∞)
把e^x展开为幂级数e^x=1+x+x^2/2!+x^3/3!+x^4/4!+.
e^/x=1/x+1+x/2!+x^2/3!+x^3/4!
再积分
∫(e^x)dx/x=lnx+x+ x^2/2*2!+x^3/3*3!+x^4/4*4!+.
=lnx+∑x^n/(n*n!)
(n=1---∞)