已知f(x)=log2(1+x)+ log2(1-x) f[(a+b)/(1+ab)]=2 f(-b)=1/2 求f(a

1个回答

  • 题目应为:f(x) = log2(1+x) - log2(1-x)

    f(x) = log2(1+x) - log2(1-x) = log2 [(1+x)/(1-x) ]

    f(-x) = log2 [(1-x)/(1+x) ] = -l og2 [(1+x)/(1-x) ] = -f(x),奇函数

    f(a) = log2 [(1+a)/(1-a) ]

    f(b) = log2 [(1+b)/(1-b) ]

    f[(a+b)/(1+ab)]=2

    log2【{1+(a+b)/(1+ab)} / {1-(a+b)/(1+ab)} 】= 2

    log2【(1+ab+a+b) / (1+ab-a-b) 】 = 2

    log2【(1+a)(1+b)/[(1-a)(1-b)] 】= 2

    log2【(1+a)/(1-a) * (1+b)/(1-b) 】= 2

    log2【(1+a)/(1-a)】+ log2【(1+b)/(1-b) 】= 2

    f(a) + f(b) = 2 .(1)

    f(-b)= 1/2

    f(b) = -f(-b) = -1/2 .(2)

    f(a) = 2-f(b) = 2-(-1/2) = 5/2