1、(1)因为AC∥OD,所以∠CAB=∠DOB,从而∠COB=2∠DOB,弦CD和BD的圆心角相等,故CD=BD;
(2)AD/AB=cos(∠BAD),BC=AB*sin(∠BAC)=AB*sin(2∠BAD);
由△PAD∽△PCB,PA/PC=AD/BC=AD/[ABsin(2∠BAD)]=1/2sin(∠BAD)=5/6;
sin(∠BAD)=3/5,则 cos(∠BAD)=4/5,
AB/AD=1/cos(∠BAD)=5/4;
2、(1)△ACE∽△BDE(共用∠E,同一弧CD上圆周角相等),CE/DE=AE/BE,所以CE/AE=DE/BE;
(2)CE*BE=AE*DE=(AD+DE)*DE=(AD+OE-AD/2)*(OE-AD/2)=(10+13-10/2)*(13-10/2)=18/8=9/4;
3、(1)A是BC半圆弧的中点,因而∠ABC=45°,tan(∠EAG)=GE/AE=1/2;
AB为圆O的直径,故BD⊥CD,∠DBA=∠BAF=∠EAG,∠BCD=45°-∠DBA=45°-∠EAG;
tan(∠BCD)=tan(45°-∠EAG)=(1-1/2)/[1+1*(1/2)]=1/3,sin(∠BCD)=1/√(1^2+3^2)=1/√((10);
对△BCG应用正弦定理:sin(∠BCD)/BG=sin(45°+∠BCD)/BC;
BG=BC*sin(∠BCD)/sin(45°+∠BCD)=BC*[1/√(10)]/[(√2/2)*(3/√10)+(√2/2)*(1/√10)]=BC*√2/4;
在等腰直角△ACB中,AB=BC*√2/2,BG=AB/2=AG;
(2)在△ABE中,AE=2AG/√5=AB/√5=BC*√10/10,cos(∠BAE)=cos(∠EAG)=2/√(1+2^2)=2/√5;
根据余弦定理:BE^2=AB^2+AE^2-2*AB*AE*cos(∠BAE)
=BC^2/2+BC^2*(1/10)-2*BC^2*(√2/2)*(√10/10)=BC^2*[1/2+1/10-(√2)*(√10/10)]=BC^2*(3-√5)/5;
BE=BC*√[(3-√5)/5]=√[2(3-√5)]=√(6-2√5)=(√5)-1;
4、(1)C是BD弧的中点,∠CAD=∠BAC,又∠CBD=∠CAD,所以∠BAC=∠CBD;
∠ACB为△CBE和△CAB的共用角,∴ △CBE∽△CAB;
(2)若S△CBE:S△CAB=1:4,则BC/AC=1/2,tan(∠BAC)=1/2;
tan(∠BAD)=tan(2*(∠BAC))=2*(1/2)/[1-(1/2)^2]=4/3;
cos(∠BAD)=3/√(3^3+4^2)=3/5;
AD/AB=cos(∠BAD)=3/5;