高数拐点问题设g(x)二阶连续可导且g(0)=0,g’(0)不等于0.f(x)=(1-cosx)g(x),证明曲线y=f
1个回答
x100x100可以这样通俗的理解拐点,即在a点的左右f''(x)的正负发生变化的点,f''(a)可以为零或者不存在.
x100x100f(x)只要求出二阶导数,再利用三角函数,就应该没问题了!
相关问题
设函数f(x)=[g(x)-cosx]/x,x≠0,其中g(x)具有二阶连续的导数,且g(0)=1,求f'(x)
高数题:设f(x)在R上有二阶连续导数,且f(0)=0,x不等于0时,g(x)=f(x)/x;x=0时,g(x)=f'(
f(x)=g(x)/x,x≠0;0,x=0,其中g(x)可导,且在x=0处二阶导数g''(0)=3,且g(0)=g'(0
设g(x)在x=0处二阶可导,且g(0)=0,f(x)=g(x),x≠0,f(x)=a,x=0;确定试a值,使函数f(x
证明如果两个可导函数f(x)与g(x),满足f(0)=0,g(x)=0且它们导数存在,g(x)不为0那么f(x)/g
设函数f(x)连续,在x=0处可导,且f(0)=0记函数g(x)=1/x²∫tf(t)dt则g'(0)=?
设f(x)=g(x)/x(x不等于0),f(x)=0(x=0),且已知g(0)=g'(0)=0,g''(0)=3,试求f
f(x)在x0处可导,g(x)在x0处不连续.则f(x)g(x)在0点
设f(x)在[0,a]上二阶可导,且f''(x)>0,f(0)=0,试证明g(x)=f(x)\x在[0,a]上单调增加
高数曲线积分题设g′(x)连续,且g(1)=g(0)=0,计算:I=∫L[2xg(y)-y]dx+[x²g′(