证明:(1)
设圆心为O,可知O在AB中点,
连接OB、BE、DE
因为AB为直径,所以∠AEB为直角
则∠BEC也为直角
而DE为直角三角形CEB的斜边中线,
所以∠DEB=∠DBE
又知在直角三角形ABE中,
EO为斜边中线,所以∠OBE=∠OEB
而∠DBE+∠OBE=∠ABC=90°
所以∠DEB+∠OEB=90°
所以OE⊥DE
(2)
因为OE=根号3,DE=3
在直角三角形ODE中,由勾股定理的OD=2倍根号3
则∠DOE=∠DOB=60°
即∠EOA=60°
易得三角形AOE为正三角形,
AE=OE=根号3
证毕~