取AB中点为M,
1/2向量OA+1/2向量OB=向量OM
OP=1/3(1/2向量OA+1/2向量OB+2向量OC)
=1/3(向量OM+2向量OC) ( O是三角形ABC的重心
=1/3(向量OM-4向量OM) ( ∴向量OC=-2向量OM)
=-向量OM
则P是AB边中线的三等分点 (非重心)
取AB中点为M,
1/2向量OA+1/2向量OB=向量OM
OP=1/3(1/2向量OA+1/2向量OB+2向量OC)
=1/3(向量OM+2向量OC) ( O是三角形ABC的重心
=1/3(向量OM-4向量OM) ( ∴向量OC=-2向量OM)
=-向量OM
则P是AB边中线的三等分点 (非重心)