y=[e^(1/x^2)arctan(x^2+x+1)]/[(x-1)(x+2)] 的渐近线有几条

1个回答

  • x->0时,y->-无穷

    有一条渐近线 x=0

    x->无穷时,

    lim y=(1*π/2)/无穷=0

    x->负无穷时

    lim y=(-π/2)/(-无穷)=0

    所以有渐近线 y=0

    y'=(-2/x³)e^(1/x²)arctan(x²+x+1)(x-1)^(-1)(x+2)^(-1)

    +e^(1/x²)[(2x+1)/((x²+x+1)²+1)](x-1)^(-1)(x+2)^(-1)

    -e^(1/x²)arctan(x²+x+1)(x-1)^(-2)(x+2)^(-1)

    -e^(1/x²)arctan(x²+x+1)(x-1)^(-1)(x+2)^(-2)

    lim x->无穷 y'

    =0+0-0-0

    =0

    lim x->-无穷 y'

    =0

    所以没有斜向的渐近线

    渐近线x轴y轴