(1)当AP+CQ=PQ时,∠PBQ=45°(证明过程:延长DC至点M,使得CM=AP,连结BM,易知△PBQ≌△MBQ,即可得到AP+CQ=PQ)
即:12-4t+12-3t=5t,得到t=2
(2)S的面积等于正方形ABCD的面积减去△APB,△PDQ,△CBQ的面积.
S=144-0.5×12×(12-4t)-0.5×3t×4t-0.5×12×(12-3t)
整理得:S= -6t^2+42t
当S=36时,即-6t^2+42t=36
(t-1)(t-6)=0
t=1或t=6
当P点到达A点时,两点都停止运动,故t=1时,S=36