原不等式整理后即证
c+2(ab)^(1/2)≥3(abc)^(1/3)
又由均值不等式知:
左边=c+(ab)^(1/2)+(ab)^(1/2)
≥3[c*(ab)^(1/2)*(ab)^(1/2)]
=3(abc)^(1/3)
=右边
得证