f(x)=2cos^2+2√3sinxcosx-1
=cos2x+1+√3sin2x-1 =cos2x+√3sin2x =2sin(2x+π/6)所以最小正周期 T=2π/2=π,因为f(x)=sinx 的对称轴为 x=π/2+kπ,k属于z所以令 2x+π/6=π/2+kπ,k属于z解得 x=π/6+kπ/2,k属于z对称轴方程 x=π/6+kπ/2,k属于z
f(x)=2cos^2+2√3sinxcosx-1
=cos2x+1+√3sin2x-1 =cos2x+√3sin2x =2sin(2x+π/6)所以最小正周期 T=2π/2=π,因为f(x)=sinx 的对称轴为 x=π/2+kπ,k属于z所以令 2x+π/6=π/2+kπ,k属于z解得 x=π/6+kπ/2,k属于z对称轴方程 x=π/6+kπ/2,k属于z