(1)∵点A(2,0),
∴OA=2,
∴OB=1/2*OA=1,
∵点B在y轴正半轴上,
∴点B的坐标为(0,1);
过C作CD⊥x轴,垂足为D,
∵BA⊥AC,∴∠OAB+∠CAD=90°,
又∠AOB=90°,∴∠OAB+∠OBA=90°,
∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°,
∴△AOB≌△CDA,
∴OA=CD=2,OB=AD=1,
∴OD=OA+AD=3,又C为第一象限的点,
∴点C的坐标为(3,2);
(2)∵点B和点C都在抛物线y=-5/6x²+bx+c上,
∴把B(0,1),C(3,2)代入,
得c=1且-5/6×9+3b+c=2
解得b=17/6,c=1
则抛物线的解析式为y=-5/6*x²+17/6*x+1
(3)该抛物线上存在点P,△ACP是以AC为直角边的等腰直角三角形,分三种情况:
(i)若以AC为直角边,点A为直角顶点,则延长BA至点P1,使得P1A=CA,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴,如图所示,
∵AP1=CA=AB,∠MAP1=∠OAB,∠P1MA=∠OBA=90°,
∴△AMP1≌△AOB,
∴AM=AO=2,P1M=OB=1,
∴OM=OA+AM=4,
∴P1(4,-1),经检验点P1在抛物线y=-5/6*x²+17/6*x+1
ii)若以AC为直角边,点C为直角顶点,则过点C作CP2⊥AC,且使得CP2=AC,得到等腰直角三角形ACP2,过点P2作y轴的平行线,过点C作x轴的平行线,两线交于点N,如图,
同理可证△CP2N≌△ABO,
∴CN=OA=2,NP2=OB=1,
又∵C的坐标为(3,2),
∴P2(1,3),经检验P2也在抛物线y=-5/6*x²+17/6*x+1
(iii)若以AC为直角边,点C为直角顶点,则过点C作CP3⊥AC,且使得CP3=AC,得到等腰直角三角形ACP3,过点P3作x轴的平行线,过点C作y轴的平行线,两线交于点H,如图,
同理可证△CP3H≌△BAO,
∴HP3=OA=2,CH=OB=1,
又∵C的坐标为(3,2),
∴P3(5,1),经检验P3不在抛物线y=-5/6*x²+17/6*x+1
则符合条件的点有P1(4,-1),P2(1,3)两点.