证明:若f'(x)|f(x),则f(x)有n重因式,其中n是多项式f(x)的次数.

1个回答

  • f(x)=a(x-a[1])(x-a[2])...(x-a[n])

    那么

    f(x)'=a[(x-a[2])(x-a[3])...(x-a[n])+(x-a[1])(x-a[3])...(x-a[n])+(x-a[1])(x-a[2])(x-a[4])...(x-a[n])+.+(x-a[1])(x-a[2])...(x-a[n-1])]

    如果f(x)'|f(x)

    我们考察f(x)'的次数,是n-1次,而且f(x)'的n-1次项的系数是n,所以可以设

    (x-m)f(x)'=nf(x)

    也就是

    (x-m)f(x)'=na(x-a[1])(x-a[2])...(x-a[n])

    所以必然m等于某个a[i]

    不妨设m=a[1]

    那么

    (x-a[1])a[(x-a[2])(x-a[3])...(x-a[n])+(x-a[1])(x-a[3])...(x-a[n])+(x-a[1])(x-a[2])(x-a[4])...(x-a[n])+.+(x-a[1])(x-a[2])...(x-a[n-1])]=na(x-a[1])(x-a[2])...(x-a[n])

    那么

    [(x-a[1])(x-a[3])...(x-a[n])+(x-a[1])(x-a[2])(x-a[4])...(x-a[n])+.+(x-a[1])(x-a[2])...(x-a[n-1])]=(n-1)(x-a[2])(x-a[3])...(x-a[n])

    左边每一项都能被(x-a[1])整除,所以右边(x-a[2]),...,(x-a[n])必然有一项满足a[j]=a[1]

    不妨设是a[2]=a[1],那么利用a[1]=m我们有:

    [(x-m)(x-a[3])...(x-a[n])+(x-m)(x-m)(x-a[4])...(x-a[n])+.+(x-m)(x-m)(x-a[3])...(x-a[n-1])]=(n-1)(x-m)(x-a[3])...(x-a[n])

    那么

    [(x-a[3])...(x-a[n])+(x-m)(x-a[4])...(x-a[n])+.+(x-m)(x-a[3])...(x-a[n-1])]=(n-1)(x-a[3])...(x-a[n])

    那么

    [(x-m)(x-a[4])...(x-a[n])+.+(x-m)(x-a[3])...(x-a[n-1])]=(n-2)(x-a[3])...(x-a[n])

    现在左边每项可以被x-m整除,所有右边必然有一项,可以被x-m整除,不妨设a[3]=m.

    然后.仿照上面的步骤,我们得到:

    a[i]都是m

    完毕.