∵f(x+y)=f(x)•f(y)
∴f(x+1)=f(x)•f(1)
∴
f(x+1)
f(x) =f(1)=2
∴
f(1)
f(0) +
f(2)
f(1) +
f(3)
f(2) +…+
f(2005)
f(2004) +
f(2006)
f(2005)
=2+2+2+…+2
=2×2006=4012.
故答案为:4012.
∵f(x+y)=f(x)•f(y)
∴f(x+1)=f(x)•f(1)
∴
f(x+1)
f(x) =f(1)=2
∴
f(1)
f(0) +
f(2)
f(1) +
f(3)
f(2) +…+
f(2005)
f(2004) +
f(2006)
f(2005)
=2+2+2+…+2
=2×2006=4012.
故答案为:4012.