已知△ABC中,BC>AB>AC,∠ACB=40°,如果D、E是直线AB上的两点,且AD=AC,BE=BC,求∠DCE的

2个回答

  • 解题思路:分当点D、E在点A的同侧,且都在BA的延长线上时,当点D、E在点A的同侧,且点D在D’的位置,E在E’的为时,当点D、E在点A的两侧,且E点在E’的位置时,当点D、E在点A的两侧,且点D在D′的位置时几种情况分类讨论后利用等腰三角形的性质即可求解.

    (1)当点D、E在点A的同侧,且都在BA的延长线上时,如图2,

    ∵BE=BC,∴∠BEC=(180°-∠ABC)÷2,

    ∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,

    ∵∠DCE=∠BEC-∠ADC,

    ∴∠DCE=(180°-∠ABC)÷2-∠BAC÷2=(180°-∠ABC-∠BAC)÷2

    =∠ACB÷2=40°÷2=20°.

    (2)当点D、E在点A的同侧,且点D在D’的位置,E在E′的为时,如图3,

    与(1)类似地也可以求得∠D'CE'=∠ACB÷2=20°.

    (3)当点D、E在点A的两侧,且E点在E’的位置时,如图4,

    ∵BE′=BC,∴∠BE'C=(180°-∠CBE')÷2=∠ABC÷2,

    ∵AD=AC,∴∠ADC=(180°-∠DAC)÷2=∠BAC÷2,

    又∵∠DCE'=180°-(∠BE'C+∠ADC),

    ∴∠DCE'=180°-(∠ABC+∠BAC)÷2=180°-(180°-∠ACB)÷2

    =90°+∠ACB÷2=90°+40°÷2=110°.

    (4)当点D、E在点A的两侧,且点D在D′的位置时,如图5,

    ∵AD′=AC,

    ∴∠AD′C=(180°-∠D′AC)÷2=(180°-∠BAC)÷2,

    ∵BE=BC,

    ∴∠BEC=(180°-∠ABC)÷2,

    ∴∠D′CE=(180°-∠ACB)÷2=(180°-40°)÷2=70°,

    故∠DCE的度数为20°或110°或70°.

    点评:

    本题考点: A:等腰三角形的性质 B:三角形内角和定理 C:三角形的外角性质

    考点点评: 本题考查了等腰三角形的性质等知识,体现了分类讨论的数学思想,难度较大.