做AD⊥BC于D
AD=ABsinB=2sin30°=2*1/2=1
sinC=AD/AC=1/根号2=根号2/2
∠ACD=45°
(一)当垂足D在BC上时,∠ACB=45°
∠BAC=180°-∠B-∠ACB=180°-30°-45°=105°
(二)当垂足D在BC延长线上时,∠ACB=180°-45°=135°
∠BAC=180°-∠B-∠ACB=180°-30°-135°=15°
做AD⊥BC于D
AD=ABsinB=2sin30°=2*1/2=1
sinC=AD/AC=1/根号2=根号2/2
∠ACD=45°
(一)当垂足D在BC上时,∠ACB=45°
∠BAC=180°-∠B-∠ACB=180°-30°-45°=105°
(二)当垂足D在BC延长线上时,∠ACB=180°-45°=135°
∠BAC=180°-∠B-∠ACB=180°-30°-135°=15°