(1)由f′(x)=2x-1得:
f(x)=x 2-x+b(b∈R)
∵y=f(x)的图象过原点,
∴f(x)=x 2-x,
∴S n=n 2-n
∴a n=S n-S n-1
=n 2-n-[(n-1) 2-(n-1)]
=2n-2(n≥2)
∵a 1=S 1=0
所以,数列{a n}的通项公式为
a n=2n-2(n∈N *)
(2)由a n+log 3n=log 3b n得:
b n=n•3 2n-2(n∈N *)
T n=b 1+b 2+b 3++b n
=3 0+2•3 2+3•3 4++n•3 2n-2(1)
∴9T n=3 0+2•3 2+3•3 4++n•3 2n(2)
(2)-(1)得: 8 T n =n• 3 2n -( 3 0 + 3 2 + 3 4 ++ 3 2n-2 )=n• 3 2n -
3 2n -1
8
∴ T n =
n• 3 2n
8 -
3 2n -1
64 =
(8n-1) 3 2n -1
64