1.
a3b3=a3/S3=1/2,S3=a1+a2+a3
故:a1+a2+a3=2a3 得:a1=d
又:S3+S5=21 解出:a1=d=1,an=a1+(n-1)d=n
Sn=(a1+an)n/2=(an+1)n/2=(n+1)n/2
bn=2/n(n+1)
2.bn=2/n(n+1)=2*[1/n(n+1)]=2*[(1/n-1/(n+1)]
b1+b2+.bn=2*[1-1/2+1/2-1/3+...+1/n-1/(n+1)]=2*[1-1/(n+1)]
1.
a3b3=a3/S3=1/2,S3=a1+a2+a3
故:a1+a2+a3=2a3 得:a1=d
又:S3+S5=21 解出:a1=d=1,an=a1+(n-1)d=n
Sn=(a1+an)n/2=(an+1)n/2=(n+1)n/2
bn=2/n(n+1)
2.bn=2/n(n+1)=2*[1/n(n+1)]=2*[(1/n-1/(n+1)]
b1+b2+.bn=2*[1-1/2+1/2-1/3+...+1/n-1/(n+1)]=2*[1-1/(n+1)]