1、
原式=[(a-b)+(a-c)]/(a-b)(a-c)+[(b-a)+(b-c)]/(b-a)(b-c)+[(c-b)+(c-a)]/(c-b)(c-a)
=(a-b)/(a-b)(a-c)+(a-c)/(a-b)(a-c)+(b-a)/(b-a)(b-c)+(b-c)/(b-a)(b-c)+(c-b)/(c-b)(c-a)+(c-a)/(c-b)(c-a)
=1/(a-c)+1/(a-b)+1/(b-c)+1/(b-a)+1/(c-a)+1/(c-b)
=1/(a-c)+1/(a-b)+1/(b-c)-1/(a-b)-1/(a-c)-1/(b-c)
=0
2、
原式=(3a-6b-4a+5b)/(a+b)-(5a-6b-7a+8b)/(a-b)
=(-a-b)/(a+b)-(-2a+2b)/(a-b)
=-(a+b)/(a+b)+2(a-b)/(a-b)
=-1+2
=1