在这个班46个学生里,对题目中列出的课目,按喜欢课目数分类有这样五种学生:4门全不喜欢、喜欢1门、喜欢2门、喜欢3门和4门全都喜欢.因为每课喜欢人数已知,那么喜欢课目总数就是确定的,本题中为35+35+38+40=148.设课目不全喜欢学生喜欢的课目总数为a,课目全喜欢学生为x人,喜欢的课目总数为4x,则a+4x=148.显然,要使x最小,a必须最大.只有当喜欢3门课目的学生数最多,a才会最大.因此不妨假设喜欢3门课目的学生数为46-x人,则
4x+(46-x)*3=148
x=10(人)
46-x=36(人)
但由于4门课目中有2门课目喜欢的学生数为35人,不可能有36人喜欢3门,所以至少有1人最多喜欢2门课目,则可假设喜欢3门的为45-x,1人喜欢2门.则
4x+(45-x)*3+1*2=148
x=11(人)
所以最少有11人4门全都喜欢,剩下35人中,34人喜欢3门,1人喜欢2门.