请大家知道一二(1)lim"n→oo"(1-1/2'2)(1-3'2)...(1-1/n'2)(2)lim"n→oo"(

1个回答

  • (1)∵(1-1/2'2)(1-1/3'2)...(1-1/n'2)

    =[(1+1/2)(1-1/2)][(1+1/3)(1-1/3)].[(1+1/n)(1-1/n)]

    =[(1+1/2)(1+1/3).(1+1/n)][(1-1/2)(1-1/3).(1-1/n)]

    =[(3/2)(4/3).((n+1)/n)][(1/2)(2/3).((n-1)/n)]

    =[(n+1)/2](1/n)

    =(1+1/n)/2

    ∴原式=lim(n->∞)[(1+1/n)/2]

    =(1+0)/2

    =1/2

    (2)∵设Sn=1/2+3/2^2+5/2^3+...+(2n-1)/2^n.(1)

    1/2Sn=1/2^2+3/2^3+5/2^4+...+(2n-1)/2^(n+1).(2)

    (1)-(2)得1/2Sn=1/2+2/2^2+2/2^3+...+2/2^n-(2n-1)/2^(n+1)

    =1/2-(2n-1)/2^(n+1)+[1/2+2/2^2+...+2/2^(n-1)]

    =1/2-(2n-1)/2^(n+1)+1-1/2^(n-1)

    =3/2-(2n+3)/2^(n+1)

    ∴Sn=3-(2n+3)/2^n

    故原式=lim(n->∞)[3-(2n+3)/2^n]

    =3-lim(n->∞)[(2n+3)/2^n]

    =3-0 (∞/∞型,应用罗比达法则)

    =3