证明:
左边=[1/cos(-α)+cos(180°+ α )]/[1/sin(540°+α)-sin(360°-α)]
=[1/cos(α)-cos( α )]/[1/sin(180°+α)+sin(α)]
=[1/cosα-cos α]/[1/(-sinα)+sinα]
=[cos² αsinα-sina]/[cosα-sin²αcosa]
=[sina/cosa][cos² α-1]/[1-sin²α]
=tana[sin²a/cos²a)
=tan³a
=右边
证明:
左边=[1/cos(-α)+cos(180°+ α )]/[1/sin(540°+α)-sin(360°-α)]
=[1/cos(α)-cos( α )]/[1/sin(180°+α)+sin(α)]
=[1/cosα-cos α]/[1/(-sinα)+sinα]
=[cos² αsinα-sina]/[cosα-sin²αcosa]
=[sina/cosa][cos² α-1]/[1-sin²α]
=tana[sin²a/cos²a)
=tan³a
=右边