(1)∵x>0,a>0
∴ f(x)=x+
a
x ≥2
a ,当且仅当 x=
a
x 即 x=
a 时,f(x)取得最小值,
∴
a =1∴a=1 --------------------(5分)
(2)设 p(t,t+
1
t )(t>0) ,
则: PM=
1
t
2 =
1
2 t ,PN=t,
∴PM• PN=
2
2 (定值)--(10分)
(3)OM=
2t+
1
t
2 ∴ S OMPN = S △OPM + S △OPN =
1
2 •
1
2 t •
2t+
1
t
2 +
1
2 t•(t+
1
t )=1+
1
2 (
1
2 t 2 + t 2 )≥ 1+
1
2 ×2
1
2 =1+
2
2 (当 t=
4
1
2
时取等号)
∴四边形OMPN面积最小值为 1+
2
2 .----------------------------------(16分)