O是平面上一定点,A,B,C是平面上不共线的三个点,动点P满足OP=OA+λ(AB/|AB|cosB+AC/|AC|co

1个回答

  • AB是指向量AB对吧?

    特殊法:当ABC为RTΔ(A=90°)时,P与A重合.而RTΔABC中A为三角形的垂心.此时λ=0符合题意.

    一般法:AB/|AB|是方向沿AB的单位向量,记为c向量(对角C),同理记AC/|AC|为单位向量b.将向量OA移至左边,左式即为向量AP.由于等式两边都是向量(λ不为0),因此同时乘以一个向量,等式仍然成立.同乘向量BC,左式为(向量)AP·BC,右式变成-|c|·|BC|+|b|·|BC|.提取公因式得右式=|BC|(|b|-|c|).由于b、c皆为单位向量,故二者模长都为1,因此右式为零,所以左式也为零,故有AP垂直于BC,即P点轨迹必过ΔABC的垂心.

    证毕.

    补充的回答:右边乘BC向量后可以写成λ[(c·BC)/cosB+(b·BC)/cosC],你画个图看看,AB与BC的夹角是∏-B,所以c·BC=|c|·|BC|·cos(∏-B)=-|c|·|BC|cosB,和分母上的cosB约了就是-|c|·|BC|.(b·BC)/cosC如法炮制.