过抛物线y=ax^2(a>0)的焦点F用以直线交抛物线于P,Q两点,若线段PF与FQ的长分别是p、q,则1/p+1/q等

1个回答

  • 显然焦点为:(1/4a,0)

    准线为y=-1/4a

    设直线PQ为y=k(x-1/4a),P(x1,y1),Q(x2,y2)

    将直线代入抛物线方程消去x

    a(y/k+1/4a)²-y=0

    ay²/k²+y(1/2k-1)+1/16a=0

    y1+y2=-(1/2k-1)/a,y1*y2=1/16a²

    由于抛物线上的点到焦点的距离等于到准线的距离

    则p=y1+1/4a,q=y2+1/4a

    则1/p+1/q=(y1+y2+1/2a)/[y1*y2+(y1+y2)/4a+1/16a²]

    =(1-1/2k+1/2)/a/[1/16a²-(1/2k-1)/4a²+1/16a²]

    =(3-k)/2a/[(3-k)/8a²]=4a