解题思路:由于一开始是1、3、5,这三个均是奇数,擦去任意一个,改为剩下两个奇数之和应是偶数,这样三个数是两个奇数一个偶数,以后如果擦掉是偶数,换上的是偶数,擦去一个奇数,换上的必是奇数,因而永远是两个奇数一个偶数,但是57、64、108是一个奇数两个偶数,所以无论如何无法得到这三个数.
由分析可知:如果擦掉是偶数,换上的是偶数,擦去一个奇数,换上的必是奇数,因而永远是两个奇数一个偶数;
所以不能;
答:最后不能得到57,64,108这三个数.
点评:
本题考点: 奇偶性问题.
考点点评: 此题应根据数的奇偶性特点进行分析、探究,进而得出问题结论.