选B.
若1+b+c≠0,则ƒ²(x)+bƒ(x)+c=0可能有两解、四解.
然而,关于X的方程ƒ²(x)+bƒ(x)+c=0有3不同实数解X1、X2、X3.
所以,当x=1时,使方程ƒ²(x)+bƒ(x)+c=0成立,则1+b+c=0
若x≠1,那么ƒ(x)=1是关于ƒ(x)的方程ƒ²(x)+bƒ(x)+c=0的唯一解,
于是, 此时1│x-1│=1,即│x-1│=1,即 x=0 或x=2
从而X1²+X2²+X3²=1²+0²+2²=5
(思路不全,仅供参考)
选B.
若1+b+c≠0,则ƒ²(x)+bƒ(x)+c=0可能有两解、四解.
然而,关于X的方程ƒ²(x)+bƒ(x)+c=0有3不同实数解X1、X2、X3.
所以,当x=1时,使方程ƒ²(x)+bƒ(x)+c=0成立,则1+b+c=0
若x≠1,那么ƒ(x)=1是关于ƒ(x)的方程ƒ²(x)+bƒ(x)+c=0的唯一解,
于是, 此时1│x-1│=1,即│x-1│=1,即 x=0 或x=2
从而X1²+X2²+X3²=1²+0²+2²=5
(思路不全,仅供参考)