答:显然抛物线y=ax^2能在第一象限与直线AB相交,说明y=ax^2>=0,所以a>0
直线AB解析式为y=-x+4与y=ax^2交于点P(m,n)
则有:am^2=-m+4=n
S△AOP=AO*Py/2=4*n/2=2n=9/2
所以n=9/4,m=7/4,a=36/49
所以y=ax^2=36x^2/49
答:显然抛物线y=ax^2能在第一象限与直线AB相交,说明y=ax^2>=0,所以a>0
直线AB解析式为y=-x+4与y=ax^2交于点P(m,n)
则有:am^2=-m+4=n
S△AOP=AO*Py/2=4*n/2=2n=9/2
所以n=9/4,m=7/4,a=36/49
所以y=ax^2=36x^2/49