彐X∈R,|X-a|+|X+1|≤2 是假命题
其含义是不存在X∈R,使|X-a|+|X+1|≤2成立
即|X-a|+|X+1|>2恒成立
只需|X-a|+|X+1|的最小值>2
而|X-a|+|X+1|的几何意义是:
数轴上与两点-1和a的距离之和,故最小值为-1与a之间距离,即为|a+1|
所以|a+1|>2
解得a>1或a
彐X∈R,|X-a|+|X+1|≤2 是假命题
其含义是不存在X∈R,使|X-a|+|X+1|≤2成立
即|X-a|+|X+1|>2恒成立
只需|X-a|+|X+1|的最小值>2
而|X-a|+|X+1|的几何意义是:
数轴上与两点-1和a的距离之和,故最小值为-1与a之间距离,即为|a+1|
所以|a+1|>2
解得a>1或a