已知向量OA与向量OB不平行,设向量OM=λOA+чOB且λ+ч=1,求证:A\B\M三点共线
1个回答
OM=λOA+(1-λ)OB
OM=λ(OA-OB)+OB
OM-OB=λ(OA-OB)
MB=λAB
证毕
相关问题
已知OA向量,OB向量不共线,设OM向量=λOA向量+μOB向量(λ,μ∈R)求证:若A、B、M三点共线,则λ+μ=1.
设向量OA、向量OB不共线,点P在AB上,求证:向量OP=λ向量OA+μ向量OB,且λ+μ=1,λ、μ∈R.
1.设向量OA,OB不共线,P点在AB上.求证:向量OP=λ向量OA+μ向量OB且λ+μ=1,λ,μ∈R
设向量OA,向量OB不共线,点P在AB上,求证:向量OP=λ向量OA+u向量OB且λ+u=1.λ,u属于R
设向量OA,OB不共线,P点在直线AB上,求证向量OP=λ向量OA+μ向量OB,且λ+μ=1,λ,μ∈R
已知OB向量=λOA向量+μOC向量,若A,B,C三点共线,求证:λ+μ=1
平面向量证明题设向量OA,向量OB不共线,P点在AB上.求证:向量OP=λ向量OA+μ向量OB且λ+μ=1,λ,μ属于R
已知存在非零实数λ,μ,且λ+μ=1,使向量OC=λ向量OA+向量OB,求证向量OA、向量OB、向量OC的终点A、B、C
向量OA(根号6,0),向量OB(0,根号3) 向量OM= λ 向量OA+ μ 向量OB且λ^2-μ^2=1
已知A、B、C是平面上不共线三点,动点P满足向量OP=1/3[(1-λ)向量OA+(1-λ)向量OB+(1+2λ)向量