二进制转换十进制
二进制数第0位的权值是2的0次方,第1位的权值是2的1次方……
例如,设有一个二进制数:0110 0100,转换为10进制为:
下面是竖式:
0110 0100 换算成 十进制
第0位 0 x 2^0 = 0
第1位 0 x 2^1 = 0
第2位 1 x 2^2 = 4
第3位 0 x 2^3 = 0
第4位 0 x 2^4 = 0
第5位 1 x 2^5 = 32
第6位 1 x 2^6 = 64
第7位 0 x 2^7 = 0
--------------------------
(0110 0100)B=(100)D
注:数字后面相应的字母表示不同的进位制.B表示二进制,O表示八进制,D表示十进制,H表示十六进制.
八进制转换十进制
八进制就是逢8进1.
八进制数采用 7这八数来表达一个数.
八进制数第0位的权值为8的0次方,第1位权值为8的1次方,第2位权值为8的2次方……
所以,设有一个八进制数:1507,转换为十进制为:
用竖式表示:
1507换算成十进制.
第0位 7 x 8^0 = 7
第1位 0 x 8^1 = 0
第2位 5 x 8^2 = 320
第3位 1 x 8^3 = 512
--------------------------
(1507)O=(839)D
同样,我们也可以用横式直接计算:
7 X 8^0 + 0 X 8^1 + 5 X 8^2 + 1 x 8^3 = (839)D
结果是,八进制数1507 转换成十进制数为 839
十六进制转换为十进制
(ABC.8C)H=10x16^2+11x16^1+12x16^0+8x16^-1+12x16^-2
=2560+176+12+0.5+0.046875
=(2748.546875)D
十进制转换为二进制、八进制、十六进制
1.整数部分除R取余
例:(125)D=(1111101)B
注:余数中最后得到的余数为最高位,最先得到的余数为最低位,从高到低依次排列.
2.小数部分乘R取整
例:(0.25)D
0.25
X 2
_______________
0.50 (整数部分0为高位)
X 2 ↓
_______________ ↓
1.00 (整数部分1为低位)
(0.25)D=(0.01)B
注:整数的转换是精确的,小数的转换可能出现无穷小数或循环小数的情况.此时需要进行舍入处理以截断,所以小数的转换可能略有偏差.箭头表示由高位到低位的趋势.