解题思路:(1)根据等边三角形的性质可得AB=BE,BC=BF,∠ABE=∠CBF=60°,再根据周角等于360°求出∠EBF=150°,从而得到∠EBF=∠CBE,然后利用“边角边”证明△BCE和△BFE全等,根据全等三角形对应边相等可得EF=EC;
(2)根据全等三角形对应角相等可得∠BEC=∠BEF,再根据等腰三角形三线合一的性质即可得证.
证明:∵△ABE和△BCF都是等边三角形,
∴AB=BE,BC=BF,∠ABE=∠CBF=60°,
∵∠ABC=90°,
∴∠CBE=90°+60°=150°,
∠EBF=360°-60°×2-90°=150°,
∴∠EBF=∠CBE,
在△BCE和△BFE中,
AB=BE
∠EBF=∠CBE
BC=BF,
∴△BCE≌△BFE(SAS),
∴EF=EC;
(2)∵△BCE≌△BFE,
∴∠BEC=∠BEF,
又∵EF=EC,
∴EB⊥CF.
点评:
本题考点: 全等三角形的判定与性质;等边三角形的性质.
考点点评: 本题考查了全等三角形的判定与性质,等边三角形的性质,等腰三角形三线合一的性质,根据角度相等求出∠EBF=∠CBE是证明三角形全等的关键,也是本题的难点.