作椭圆x²/a²+y²/b²=1的右准线,过点A、B分别引右准线的垂线,垂足分别是D、C,过点A作BC的垂线,垂足是H.设FB=t,则FA=3t,由椭圆第二定理,得:AD=3t/e,BC=t/e,则BH=2t/e,在直角三角形ABH中,AB=4t,BH=2t/e=4t/√3,所以AH=(4√6t)/3,则tan(∠ABH)=AH/BH=√2,即直线AB的斜率k=√2.
已知椭圆c:x2/a2+y2/b2=1的离心率为根号3/2,过右焦点f且斜率为k的直线与c交与A.B两点,若AF=3FB
1个回答
相关问题
-
双曲线C:x2/a2-y2/b2=1的右焦点为F,过F且斜率为根号3的直线交C于A、B两点,若AF=4FB,则C的离心率
-
已知椭圆C:(x^2/4)+y^2=1,过右焦点F且斜率为k(k>0)的直线与椭圆C交于A、B两点,AF=3FB.求k.
-
椭圆C:x^2/a^2 + y^2/b^2 = 1 ,离心率为√3/2 ,过右焦点F且斜率为k (k>0)的直线与C交于
-
已知椭圆C:x*2/a*2+y*2/b*2=1(a>b>0)的离心率为√3/2,过右焦点F且斜率为k(k>0)的直线与
-
椭圆C x^2/a^2+y^2/b^2=1 (a>b>0)的离心率为√3/2,过右焦点F且斜率为k k>0的直线交椭圆A
-
斜率为根号3的直线l过椭圆的右焦点,且交与椭圆A,B AF=2FB 则此椭圆的离心率是
-
斜率为根号3的直线l过椭圆的右焦点,且交与椭圆A,B AF=2FB 则此椭圆的离心率是
-
已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/2,过右焦点F且斜率为k(k>0)的直线与
-
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为(√3)/2,过右焦点F且斜率为k(k>0)的直线
-
已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的离心率为根号3/3,过右焦点F的直线l与C相交与A、B两点