证明:
过点C作CE∥AD交BA的延长线于E,则DB/DC=AB/AE.
∵CE∥AD,
∴∠DAC=∠ACE,∠BAD=∠AEC.
∵AD平分∠BAC,∠BAD=∠DAC,
∴∠ACE=∠AEC,AE=AC.
∴DB/DC=AB/AE=AB/AC.
证明:
过点C作CE∥AD交BA的延长线于E,则DB/DC=AB/AE.
∵CE∥AD,
∴∠DAC=∠ACE,∠BAD=∠AEC.
∵AD平分∠BAC,∠BAD=∠DAC,
∴∠ACE=∠AEC,AE=AC.
∴DB/DC=AB/AE=AB/AC.