(a2-a1)/a1=1/3
an-an-1=[1-(1/3)^n]/(1-1/3)
=[1-(1/3)^n]/(2/3)
=3*[1-(1/3)^n]/2
=[3-(1/3)^(n-1)]/2
=3/2-(1/3)^(n-1)/2
an-an-1=3/2-(1/3)^(n-1)/2
a(n-1)-a(n-2)=3/2-(1/3)^(n-2)/2
.
a3-a2=3/2-(1/3)^2/2
a2-a1=3/2-(1/3)^1/2=3/2-1/6
以上等式相加得
an-a1=3/2-(1/3)^(n-2)/2+3/2-(1/3)^(n-2)/2
+.3/2-(1/3)^1/2+3/2-(1/3)^1/2
=3n/2+1/6*[1-(1/3)^(n-1)]/(1-1/3)
=3n/2+1/2*[1-(1/3)^n]/(2/3)
=3n/2+3*[1-(1/3)^n]/4
=3n/2+3/4-(1/3)^(n-1)/4
an=3n/2+3/4-(1/3)^(n-1)/4+1
an=3n/2+7/4-(1/3)^(n-1)/4