首页
作文
年级
一年级
二年级
三年级
四年级
五年级
六年级
字数
50字
100字
150字
200字
250字
300字
350字
体裁
日记
读后感
记叙文
抒情
写景
句子
造句
句子
俗语
标语
格言
横幅
问候语
美句
佳句
寄语
词句
祝福语
口号
谚语
广告语
条幅
宣传语
名言警句
名句
名言
语录
词典
问答
登录
导数 考研.李永乐书上一题.设f(x)在(a,b)上可导,X0属于(a,b)是 f`(x) 的间断点,求证,x=X0是f
1个回答
看清楚题目,题目是说f'(x)没有第一类间断点(跳跃型)
这个是著名的Darboux定理,你自己先考虑,实在证不出再继续问.
0
0
相关问题
设f(x)在[a,b]上可导,f′(x)在[a,b]上可积,f(a)=f(b)=0,求证:所有x属于[a,b],有|f(
0
0
一元函数可导一定连续吗?李永乐今年的660题里面第89题,“设f(x)在(a,b)可导,x0属于(a,b)是f‘(x)的
0
0
设f(x)在[a,b]上连续,x0属于(a,b),且f(x)在(a,x0)与(x0,b)内均可导
0
0
设f(x)在[a,b]上连续,f(a)=f(b)=0,f(x)在(a,b)内二阶可导,且f'+(a)>0.求证在(a,b
0
0
设f(x)在[a,b]上二阶可导,且f''(x)>0,证明:函数F(x)=(f(x)-f(a))/(x-a)在(a,b]
0
0
设f(x)在区间[a,b]上连续,且f(x)>0,证明 f(x)在[a,b]上的导数 乘 1/f(x)在[a,b]上的导
0
0
设f(x)在[a,b]上连续,(a,b)内可导,且f'(x)≠0,f(a)f(b)
0
0
函数f(x)在[a,b]上二阶可导,(a)=f(b)=0,F(x)=(x-a)f(x),证(a,b)上至少存在一点c,F
0
0
f(x)在[0,a]上连续 在(0,a)内可导 且f(0)=0 f(x)的导数单调增加 求证:f(x)/x在(0,a)内
0
0
设f(x)在[a,b]二阶可导,f'(x)>0,f''(x)>0,证明:(b-a)f(a)b)f(x)dx
0
0