一个数列:X(n+2)=C1X(n+1)+C2X(n)
设r,s使X(n+2)-rX(n+1)=s[X(n+1)-rXn]
所以X(n+2)=(s+r)X(n+1)-srXn
C1=s+r
C2=-sr
消去s就导出特征方程式 r*r-C1*r-C2=0
一个数列:X(n+2)=C1X(n+1)+C2X(n)
设r,s使X(n+2)-rX(n+1)=s[X(n+1)-rXn]
所以X(n+2)=(s+r)X(n+1)-srXn
C1=s+r
C2=-sr
消去s就导出特征方程式 r*r-C1*r-C2=0