[x√(1-y²)]dx+[y√(1-x²)]dy=0
[y√(1-x²)]dy=-[x√(1-y²)]dx
分离变量得 ydy/√(1-y²)=-xdx/√(1-x²)
取积分得:-(1/2)∫d(1-y²)/√(1-y²)=(1/2)∫d(1-x²)/√(1-x²)
积分之得:-√(1-y²)=√(1-x²)+C
即通解为:√(1-x²)+√(1-y²)+C=0
[x√(1-y²)]dx+[y√(1-x²)]dy=0
[y√(1-x²)]dy=-[x√(1-y²)]dx
分离变量得 ydy/√(1-y²)=-xdx/√(1-x²)
取积分得:-(1/2)∫d(1-y²)/√(1-y²)=(1/2)∫d(1-x²)/√(1-x²)
积分之得:-√(1-y²)=√(1-x²)+C
即通解为:√(1-x²)+√(1-y²)+C=0