1.a+c=2b,
cos[(A-C)/2]=2sin(B/2),
1/tanA+1/tanC
=2sinB/sin(B/2)
=4cos(B/2)
=√14.
2.向量BA*BC=3ac/4=3/2,ac=2,
由余弦定理,
b^2=a^2+c^2-3ac/2=(a+c)^2-7,
把b=(a+c)/2代入上式,得
a+c=(2/3)√21.
1.a+c=2b,
cos[(A-C)/2]=2sin(B/2),
1/tanA+1/tanC
=2sinB/sin(B/2)
=4cos(B/2)
=√14.
2.向量BA*BC=3ac/4=3/2,ac=2,
由余弦定理,
b^2=a^2+c^2-3ac/2=(a+c)^2-7,
把b=(a+c)/2代入上式,得
a+c=(2/3)√21.